An Improved Inertial Frame Alignment Algorithm Based on Horizontal Alignment Information for Marine SINS

نویسندگان

  • Yanting Che
  • Qiu Ying Wang
  • Wei Gao
  • Fei Yu
چکیده

In this paper, an improved inertial frame alignment algorithm for a marine SINS under mooring conditions is proposed, which significantly improves accuracy. Since the horizontal alignment is easy to complete, and a characteristic of gravity is that its component in the horizontal plane is zero, we use a clever method to improve the conventional inertial alignment algorithm. Firstly, a large misalignment angle model and a dimensionality reduction Gauss-Hermite filter are employed to establish the fine horizontal reference frame. Based on this, the projection of the gravity in the body inertial coordinate frame can be calculated easily. Then, the initial alignment algorithm is accomplished through an inertial frame alignment algorithm. The simulation and experiment results show that the improved initial alignment algorithm performs better than the conventional inertial alignment algorithm, and meets the accuracy requirements of a medium-accuracy marine SINS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment

Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...

متن کامل

Fast Alignment of SINS for Marching Vehicles Based on Multi-Vectors of Velocity Aided by GPS and Odometer

In the strap-down inertial navigation system (SINS), the initial attitude matrix is acquired through alignment. Though there were multiple valid methods, alignment time and accuracy are still core issues, especially regarding the condition of the motion carrier. Inspired by the idea of constructing nonlinear vectors by velocity in a different coordinate frame, this paper proposes an innovative ...

متن کامل

An Improved Coarse Alignment Algorithm for Odometer-Aided SINS Based on the Optimization Design Method

An improved coarse alignment (ICA) algorithm is proposed in this paper with a focus on improving alignment accuracy of odometer-aided strapdown inertial navigation system (SINS) under variable velocity and variable acceleration condition. In the proposed algorithm, the outputs of inertial sensors and odometer in a sampling interval are linearized rather than assumed to be a constant, which impr...

متن کامل

An Improved Alignment Method for the Strapdown Inertial Navigation System (SINS)

In this paper, an innovative inertial navigation system (INS) mechanization and the associated Kalman filter (KF) are developed to implement a fine alignment for the strapdown INS (SINS) on stationary base. The improved mechanization is established in the pseudo-geographic frame, which is rebuilt based on the initial position. The new mechanization eliminates the effects of linear movement erro...

متن کامل

Improved Arithmetic of Two-position Fast Initial Alignment for Sins Using Unscented Kalman Filter

An arithmetic of fast two-position initial alignment for Strapdown Inertial Navigation System (SINS) using Unscented Kalman Filter (UKF) is proposed in this paper to solve the initial alignment problems of SINS. Based on the analysis of initial alignment method of SINS, the nonlinear model for two-position attitude calculation is derived, and the two-position method is used to eliminate the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015